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Squalene is a natural triterpene and an important intermediate of sterol and hopanoid biosynthesis in

various types of cell from bacteria to human. Synthesis and further conversion of squalene are key steps in

the metabolism of sterols and related components. Here we summarize the recent knowledge of squalene

biochemistry, its molecular properties, and its physiological effects. We compare squalene biosynthetic

pathways in different cell types and describe biotechnological strategies to isolate this lipid. Finally,

applications of squalene in nutrition, pharmacy, and medicine are discussed.
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1 Introduction

Squalene (2,6,10,15,19,23-hexamethyl-6,6,10,14,18,20-tet-

racosahexane) is a triterpenic hydrocarbon. It is widely

present in nature, and substantial amounts are found in olive

oil, palm oil, wheat-germ oil, amaranth oil, and rice bran oil.

The richest source of squalene (SQ), however, is shark liver

oil (60 wt%) which has been traditionally used as source of

this lipid. In humans, SQ is present at its highest concen-

tration in sebum (�13%). Squalene is synthesized in all types

of cells because it is a key intermediate in the formation of

eukaryotic sterols and bacterial hopanoids. Squalene and its

related compounds, oxidosqualene and bis-oxidosqualene,

are precursors of nearly 200 different triterpenes [1]. Some

microorganisms, e.g., bacteria, are also able to utilize SQ as a

carbon source.

Squalene has several beneficial properties. It is a natural

antioxidant [2], serves in skin hydration [3] and has been

used as emollient in adjuvants for vaccines [4]. As a com-

pound of olive oil, it also has a preventive effect on breast

cancer, possesses tumor-protective, and cardio-protective

properties [5–7] and decreases the serum cholesterol level

[8, 9]. Moreover, squalenoylation has become a common

method for delivering prodrugs into cells [10–12].

During the last decades many efforts were made to isolate

SQ from new sources. Distillate residues from olive oil,

soybean oil, rice bran oil, or amaranth oil became attractive

alternatives for shark liver oil. Isolation of SQ from micro-

organisms is still under development and investigated at

present only at a scientific level. Initial studies of this kind

were performed with bacteria, yeast, and with microalgae.

In this review, we will describe biochemical and bio-

physical properties of SQ and then address biosynthesis of

this compound in different cell types with emphasis on SQ

forming enzymes. Methods of molecular biology set the stage

to identify genes and gene products involved in SQ metab-

olism from mammalian cells, plants, and microorganisms.

We will discuss differences of SQ synthetic pathways in

different cells and describe specific properties of enzymes

catalyzing key steps in squalene formation and conversion.

Finally, we will briefly describe technological processes to

isolate squalene from various sources and discuss new devel-

opments to utilize squalene in nutrition, pharmacy, medicine,

and cosmetics.

2 Biochemical and biophysical properties of
squalene

Squalene is a polyunsaturated triterpene, which contains six

isoprene units (Fig. 1). At RT, it is a liquid with pleasant,
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bland taste. In Table 1, some properties of squalene such as

viscosity, density, and solubility are summarized. These data

underline the strong hydrophobic nature of this molecule.

Due to its chemical structure, especially the high degree of

unsaturation, squalene is not very stable and gets easily oxi-

dized. In complex mixtures such as olive oil, however, its

stability is improved. Vice versa, squalene was found to

contribute to virgin olive oil stability under light exposure

[13, 14]. Nevertheless, Manzi et al. [15] observed decompo-

sition of squalene in the range of 26–47% in olive oil after

6 months storage in the dark and at RT. Other studies

described a maximum of 20% degradation even under more

severe conditions or during pan-frying [13, 14, 16–18].

Due to its non-polar nature incorporation of squalene into

biological membranes is limited. As a consequence, squalene

rather accumulates in lipid storage compartments. Kalvodova

[19] showed that phagocytes when treated with squalene

containing oil-in-water emulsions accumulated this lipid

together with other components in so-called lipid droplets.

In Schwann cells, squalene was also found mainly in lipid

droplets [20]. Similarly, yeast squalene was detected in the

highly hydrophobic core of lipid particles/droplets, and only

at small amounts in cellular membranes [21, 22]. As can be

seen from Fig. 1, double bonds allow squalene to occur in

several conformations, e.g., in a symmetric, stretched, or

coiled form [23]. Most interestingly, squalene can also be

organized in the shape of a sterol which may allow accom-

modation in a membrane. Hauss et al. [24] showed that

squalane, a hydrogenated relative of squalene, was horizon-

tally inserted in a phospholipid bilayer membrane. These

authors argued that such a topology caused protection against

proton leakage and affected transmembrane proton flux.

Lohner et al. [25] demonstrated that squalene at a concen-

tration of 6 mol% in artificial phospholipid vesicles altered

the lamellar-to-inverse-hexagonal phase transition by

increasing the size of inverse hexagonal phase tubes. It was

assumed that in such a situation squalene was rather coiled

and stored in the most disordered region of the membrane

bilayer. Experiments from our own laboratory (Spanova

et al., unpublished data) using biological membranes from

the yeast and model membranes extended this model. We

concluded from these experiments that squalene in the endo-

plasmic reticulum (ER) may rather adapt to a conformation

close to ergosterol, whereas in the plasma membrane the

coiled conformation may be predominant.

3 Squalene in animal and human cells

In the mammalian organism, squalene is one of the most

important lipids of skin cells. It is synthesized in sebaceous

glands where it accounts for 13% of total lipids [26]. Its total

concentration in the skin [27, 28] and the squalene to cho-

lesterol ratio [29] vary with the skin site. Secretion of squalene

was found to depend on the individual in a range from 125 to

475 mg per day [29]. Interestingly, very little squalene pro-

duced in sebaceous cells is further converted to cholesterol.

This effect may be caused either by overexpression of squa-

lene synthase (SQS), enhanced activity of the enzyme, or by

down-regulation of oxidosqualene cyclase (SQE) which con-

verts squalene to oxidosqualene and channels the intermedi-

ate to the cholesterol biosynthetic pathway. Both enzymes of

sebaceous glands are sensitive to environmental conditions

and subject to transcriptional regulation [26].

Squalene of mammalian cells originates partly from

endogenous biosynthesis and partly from dietary sources.

The intracellular pool of squalene appears to be in an equi-

librium with the pool in the plasma [30]. About 60–85% of

dietary squalene is absorbed and transported in the serum,

mostly together with VLDL, and then distributed to various

tissues. Only a very small amount of squalene taken up as

nutrient is converted to cholesterol, and even higher con-

sumption of squalene does not change the cholesterol level

Figure 1. Chemical structure of squalene and its precursor. A,

Chemical structure of isoprene. Different structures of squalene

are: B, stretched form; C, coiled form; and D, ‘‘sterol-like’’ form.

Table 1. Physical properties of squalene

Properties Values Ref.

Octanol/water partitioning coefficient (log P) 10.67 [302]

Solubility of squalene in water 0.124 mg/L [302]

Viscosity �11 cP [303–305]

Surface tension �32 mN/m [303–305]

Density 0.858 g/mL [303–305]
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[31]. Increased amounts of squalene in the serum are safe,

beneficial, and exhibit chemo-preventive and hypocholester-

olemic properties [32, 33].

Squalene at very high concentration can be found in the

bodies of cartilaginous fish which lack a swim bladder and

must therefore reduce their body density with fats and oils.

Squalene is highly abundant in sharks (Squallus spp,

Centrophorus squamosus) and whales (Physeter macrocephalus)

[34–36]. In shark liver oil, the amount of squalene reaches

40–70% by weight. This extraordinary high concentration of

squalene resulted in intense shark hunting to use this lipid as a

basis for health care products. However, environmental and

marine protection concerns became a strong motivation to

search for alternative squalene sources.

3.1 Biosynthesis of squalene and its regulation in
mammalian cells

Sterols are essential structural and regulatory components of

eukaryotic cell membranes. Squalene plays an important role

as an intermediate in the sterol biosynthesis. Synthesis of

squalene is similar in all organisms, although properties of

enzymes involved in its formation can differ. In some cases,

reactions leading to squalene formation are catalyzed by

single enzymes, whereas in other cases more enzymes (iso-

enzymes) are involved.

In animal and human cells, cholesterol can be synthesized

via de novo mevalonate (MVA)/isoprenoid pathway or taken

up through LDL. These lipoproteins enter the cell via LDL

receptors on the cell surface, get transported to lysosomes,

and hydrolyzed in this compartment. There is a balance

between internal and external cholesterol sources which is

governed by feedback control of biosynthetic and uptake

pathways. Major players in feedback control mechanisms

are 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMGR)

and LDL receptors. To prevent cholesterol accumulation,

HMGR activity can be reduced by more than 90%, and the

number of LDL receptors can be decreased [37],

respectively.

In animal cells, de novo synthesis of cholesterol (Fig. 2)

occurs through the mevalonate/isoprenoid pathway. This

pathway starts with acetyl-CoA which is converted to 3-

hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) and

then reduced by HMGR to MVA. As mentioned above, this

step is rate limiting and highly regulated. Regulation is main-

tained by activating or degrading HMGR. HMGR, an inte-

gral protein of ER membranes contains a transmembrane

sterol-sensing domain which plays an important role in the

degradation of the enzyme by the proteasome. Recent studies

showed direct and indirect stimulation of degradation by

cholesterol, lanosterol and oxysterols [38, 39]. After phos-

phorylation and decarboxylation of mevalonate, isopentenyl

diphosphate (IPP) and dimethylallyl diphosphate (DMAPP)

are formed, and the latter component serves as a precursor of

all polyprenyl compounds. Subsequently, condensation with

another IPP molecule yields farnesyl pyrophosphate (FPP),

which can be either converted to squalene and sterols or

directed toward the synthesis of isoprenylated cellular metab-

olites such as heme, dolichols, and ubiquinone [40–42]. FPP

is also involved in farnesylation and geranylgeranylation of

proteins including small GTP-binding proteins like Rho, Ras,

and Rac [43–45]. In the subsequent step of the pathway, SQS

combines two FPP molecules to form squalene and thus

directs FPP toward cholesterol synthesis [46–48]. SQS com-

petes with other enzymes for the FPP substrate and responds

to the cellular sterol content in a similar manner as HMGR

[48]. SQS affects synthesis of other essential non-sterol iso-

prenoids by triggering FPP to their pathways [49, 50]. In the

following enzymatic step, epoxidation of squalene to 2,3-

oxidosqualene catalyzed by SQE (squalene monooxygenase)

occurs [51, 52]). For the activity of this enzyme, a cytosolic

(S105) fraction, molecular oxygen, NADPH-cytochrome

c reductase, NADPH and FAD are required [53–56]. This

enzymatic step has been well studied, since inhibitors (allyl-

Figure 2. Squalene synthesis via MVA in mammalian cells. AACT,

acetoacetyl-CoA thiolase; FPS, FPP synthase; HMGS, HMG-CoA

synthase; HMGR, HMG-CoA reductase; IDI, isopentenyl diphos-

phate isomerase; SQS, squalene synthase; SQE, squalene

epoxidase.
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amines) of this reaction have beneficial effects such as low-

ering LDL bound cholesterol [57]. SQE is affected by sterols

in a feedback mechanism, but not by non-sterol intermediates

of the MVA pathway [58]. The product of the SQE reaction,

2,3-oxidosqualene is then further converted to cholesterol in

several steps which will not be discussed here.

Subcellular localization of enzymes involved in the pre-

squalene biosynthetic pathway of sterol formation has

been a matter of dispute for a long time [59–62].

Reactions are distributed in the cytosol and the ER [61],

but early steps of isoprenoid formation are also associated

with peroxisomes [63]. It appears that acetyl-CoA

derived from peroxisomal beta-oxidation can be pre-

ferentially channeled to isoprenoid formation in this

compartment.

4 Squalene in plants

Besides shark liver oil several plants became valuable sources

for the isolation of squalene. Highest enrichment of squalene

was detected in olive oil and amaranth oil, but smaller

amounts are also present in palm oil, wheat germ oil, peanut

oil, and rice brain oil [5, 64]. In olive oil squalene accumu-

lates at a yield of 7 mg per g oil [5]. In combination with oleic

acid (72%) and polyphenols squalene was found to be

beneficial with a more pronounced effect on prevention than

treatment [5, 65, 66].

4.1 Biosynthesis of squalene in plants and its
regulation

In plants, the biosynthetic pathway of sterols is slightly differ-

ent from animal cells and fungi. Biosynthetic reactions from

squalene to phytosterols result in formation of various sterols,

such as sitosterol, stigmasterol, campesterol, and isofuco-

sterol. In plants, squalene is oxidized to 2,3-oxidosqualene

and then converted to cycloartenol (9b,19-cyclo-24-lano-

sten-3b-ol) instead of lanosterol as known from in animals

and fungi, which is further metabolized to the end product of

this biosynthetic cascade, sitosterol [67–69]. Phytosterols

synthesized in the ER are transported mostly to the plasma

membrane; a minor amount of squalene is retained to the

Golgi [70–72].

Isoprenoids of plants can be synthesized via mevalonate

pathway (MVA) in the cytosol leading to the formation of

sterols and brassinosteroids or in mitochondria where side

chains of ubiquinone are formed. Alternatively, the 2C-

methyl-D-erythritol-4-phosphate (MEP) pathway, formerly

known as non-mevalonate or 1-deoxy-D-xylulose-5-phos-

phate (DXP) pathway [73], located to plastids leads to the

synthesis of carotenoids, the side chains of chlorophylls,

plastoquinones, and isoprenoid-type phytohormones

[73, 74] (Fig. 3). The MVA pathway forms only IPP, whereas

the MEP pathway generates IPP and DMAPP. Exchange

of isoprenoids between cytosol and plastids is rather

inefficient [69].

Figure 3. Squalene synthesis in plants via

mevalonate (MVA) pathway in cytosol and

methylerythritol phosphate (MEP) pathway in

plastids. The product of MVA pathway, IPP, is

further metabolized to FPP. FPP either forms

sterols and polyprenols via squalene in the

ER or is metabolized to sesquiterpenes, triter-

penes and homoterpenes. In mitochondria, IPP

condensates with DMAPP yielding ubiquinons.

MEP pathway products are monoterpenes,

diterpenes, tocopherols, carotenoids etc. in

plastids. Updated and simplified from [299].

AACT, acetoacetyl-CoA thiolase; DMAPP,

dimethylallyl diphosphate; DXP, 1-deoxy-D-

xylulose-5-phosphate; DXR, DXP reducto-

isomerase; DXS, DXP synthase; FPP, farnesyl

diphosphate; FPS, FPP synthase; G-3-P, gly-

cerol-3-phosphate; GPP, geranyl diphosphate;

GGPP, geranylgeranyl diphosphate; HMBPP,

(E)-4-hydroxy-3-methyl-but-2-enyl pyropho-

sphate; HMG-CoA, 3-hydroxy-3-methyl-

glutaryl-CoA; HMGS, HMG-CoA synthase;

HMGR, HMG-CoA reductase; IDI, isopentenyl

diphosphate isomerase; IPP, isopentenyl diphos-

phate; MEP, 2-C-methyl-D-erythritol 4-phos-

phate; MVA, mevalonate; SQS, squalene

synthase; ER, endoplasmic reticulum.
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The MVA pathway and squalene synthesis in plants are

similar to vertebrates and fungi (see Fig. 3) with three import-

ant steps catalyzed by HMGR, farnesyl pyrophosphate syn-

thase (FPS), and SQS. The number of genes encoding

HMGR varies from two as described for Arabidopsis thaliana

[75, 76] to at least eleven in potato [77, 78]. HMGR was

found to be the crosstalk enzyme for sphingolipid and sterol

biosynthesis [79]. An hmg1 mutation in Arabidopsis exhibited

dwarfism, early senescence, and male sterility. In contrast,

hmg2 had no visible phenotype [80] but complete deletion

was lethal for male gametophytes [81]. As in mammalian

cells, HMGR is controlled through feedback regulation in

response to selective depletion of endogenous sterols [82]. In

tobacco cells, up-regulation of HMGR led to overproduction

of sterols [83], which were stored together with fatty acids in

the form of steryl esters in lipid droplets, called sterolosomes.

Overexpression of other enzymes of the pathway, e.g., FPS1S

[84], did not exhibit any or only a minor effect on the total

amount of sterols.

The MEP pathway starts with condensation of glyceral-

dehyde-3-phosphate and pyruvate to form DXP catalyzed by

DXP synthase (DXS, formerly CLA1). DXP serves as a

precursor in the thiamine and pyridoxol biosynthesis in bac-

teria and plastids. DXS is the feedback regulation point of this

pathway [84, 85]. Deletions in this pathway resulted in seed-

ling-lethal albino phenotype which was rescued by addition of

1-deoxy-D-xylulose, declaring the MEP pathway essential for

plants [86–88]. Two additional DXS-like (DXL) genes were

found in green siliques (DXL1, formerly DXS2) and roots

(DXL2, formerly DXS3) to encode DXS. Since DXL genes

did no rescue a cla1/dxs-1 deletion they are most likely func-

tionally unrelated to DXS. The other steps of the MEP

pathway seem to be encoded by single genes, each. MEP

is formed via reductive isomerization catalyzed by 1-deoxy-D-

xylulose 5-phosphate reductoisomerase (DXR). MEP is fur-

ther converted to IPP and DMAPP via several steps. It is

noteworthy that almost all null mutants of this pathway exhib-

ited the albino phenotype suggesting that chloroplast develop-

ment of these mutants is arrested at early stages [86, 89–91].

Condensation of two molecules of IPP with DMAPP

producing FPP is catalyzed by FPS. In plants, FPP serves

as substrate for the synthesis of phytosterols, dolichols, ubi-

quinones, heme a, sesquiterpenoid, phytoalexins, or abscisic

acid. Arabidopsis thaliana contains three FPS isoenzymes,

namely mitochondrial FPS1L, and cytosolic FPS1S and

FPS2 [92, 93]. FPS1L and FPS1S differ only at the N-

terminus. FPS1S and FPS2 are differently expressed.

While FPS1S is expressed in most plant organs and during

the whole plant cycle, FPS2 is strongly expressed during seed

development [92, 94]. Single FPS mutations did not show

any major effect because isoenzymes compensated for the

defect. Lack of FPS2 causes HMGR upregulation in seeds

which compensates for the low expression of FPS1 during

seed development. The fps1fps2 double mutant was viable,

but resulted in arrested embryo development at the pre-

globular stage [94]. The effect of FPS overexpression is

not yet clear. Whereas overexpression of FPS1S in transgenic

Arabidopsis did not exhibit any or only a minor effect on the

total amount of sterols [95], overexpression of yeast FPS1 in

tobacco cells increased the amount of sterols [96].

Interestingly, overexpression of FPS1S in Arabidopsis showed

other effects such as induction of a cell death/senescence-like

response and reduction of the cytokinin level [95]

In the last step of plant squalene synthesis two molecules

of FPP condense and form squalene via presqualene diphos-

phate catalyzed by SQS [97]. In Arabidopsis thaliana, SQS1,

and SQS2 encode two SQS, but only the gene product of

SQS1 shows enzymatic activity [98]. SQS1 is expressed in all

plant tissues and targeted to the ER membrane [99]. It can be

specifically inhibited by squalestatin, also called zaragozic

acid, which has frequently been used to investigate the iso-

prenoid pathway in plants. In the presence of zaragozic acid,

FPP gets redirected toward the non-sterol isoprenoid path-

way [100].

SQE catalyzes conversion of squalene to 2,3-oxidosqua-

lene. In contrast to mammals and yeast, plants have multiple

genes which were predicted to encode SQE. One of six

putative Arabidopsis SQE genes, SQE1, is essential for normal

plant development and regulates root and hypocotyl

elongation [101, 102]. It is involved in drought tolerance

and regulates the amount of ROS [102]. Mutants deleted

of SQE1 accumulate squalene, have elongation defects and

are not able to create viable seeds. The gene product of SQE2

produces primary 2,3-oxidosqualene, whereas gene products

of SQE1 and SQE3 can also synthesize 2,3:22,23-dioxido-

squalene [101]. Triterpenoid synthesis may also be associ-

ated with mitochondria, since SQE2 and one putative SQE

from rice have predicted mitochondrial targeting sequences.

Moreover, Arabidopsis FPS1 is a mitochondrial protein

[93, 101]. SQE4, SQE5, and SQE6 have specific although

hypothetic functions, e.g., in plant defensive mechanism of

rice [103, 104]. Inhibition of SQE with terbinafine leads

to accumulation of squalene which is stored mostly

in lipid droplets from where it can be mobilized when

needed [82].

5 Squalene in microorganisms

Microbial squalene production has become a promising

alternative to other sources of this lipid mentioned above.

Although microorganisms do not accumulate as much squa-

lene as plants or shark liver, their advantage is fast and

massive growth. Squalene isolation from yeast [105], especi-

ally Saccharomyces [106–109], Torulaspora delbrueckii [110],

Pseudomonas [111], Candida [112], the algae Euglena [113]

and the microalgae Traustochytrium [110, 114],

Schizochytrium mangrovei [115, 116], and Botryococcus braunii

[117] has been reported.
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5.1 Squalene synthesis in prokaryotes

The synthesis of squalene in bacteria differs depending on

species [118]. The squalene precursors IPP and dimethylallyl

diphosphate (DMAPP) are synthesized either via MVA,

MEP, or both pathways [119]. The MEP pathway occurs

mostly in eubacteria and cyanobacteria, whereas MVA was

found in archaea and a few eubacteria [41]. Obligate parasitic

eubacteria such as Rickettsia or Mycoplasma do not use any of

these mechanisms and obtain their isoprenoids most likely

from host cells [120, 121].

The eubacterial MEP pathway (Fig. 4) is similar to plants.

Enzymes of the bacterial MEP pathway were identified and

characterized [74, 89, 118, 119, 122, 123]. The pacemaker in

this pathway is DXS which plays a limiting role in the iso-

prenoid pathway of prokaryotes [124–128]. Instead of glyc-

erol-3-phosphate (G-3-P) and pyruvate, DXS can also utilize

other substrates such as sugar phosphates and short alde-

hydes as acceptors, and the a-ketoacids hydroxypyruvate and

a-oxobutyrate as donor substrates [129]. Recently, conver-

sion of DXP to MEP catalyzed by a new family of DXR was

reported in the bacterium Brucella abortus [130]. Some bac-

teria lack DXR, but have DRL (DXR-like) enzymes which

perform the same reaction. In some bacteria both types of

enzymes were detected [130].

Ershov et al. [131] reported that inhibition of DXR from

cyanobacteria did not affect isoprenoid biosynthesis under

photosynthetic conditions. These authors proposed alterna-

tive substrates from the pentose phosphate cycle which might

enter the MEP pathway downstream of MEP. When isopen-

tenyl diphosphate isomerase (IDI) type II was inactivated also

DMAPP was synthesized through an alternative pathway

[132] different from the typical MEP pathway found in

E. coli. In contrast to plants, many bacteria harbor two types

of IDI, namely IDI-type I and type II [133–135]. IDI-type I

depends on divalent cations whereas IDI-type II requires

metal ions, FMN, and NADPH under anaerobic conditions.

The MVA pathway is used by most archaebacteria, e.g.,

Halobacterium cutirubrum or Caldariella acidophilus, for the

synthesis of their membrane ether-linked isoprenoid lipids

[136, 137]. Three enzymes of the MVA pathway, namely

HMGS, HMGR and mevalonate kinase were identified.

Moreover, IDI type II was detected in archaea. In some

Streptomyces species, the complete MEP and MVA pathways

were found [138]. It was shown that the MEP pathway forms

primary metabolites whereas the MVA pathway played a non-

essential role in synthesizing secondary metabolites

[139, 140]. Based on these observations and on results of

lateral gene transfer it was concluded that the MEP pathway

is older than the MVA pathway [123].

IPP and DMAPP formed in bacteria as described above

are condensed to FPP, and FPP is then further metabolized

to squalene by the action of SQS. The sequence of SQS from

Thermosynechococcus elongatus BP-1 has only 30% similarity

with eukaryotic SQS, but the isolated protein showed similar

biochemical properties such as the same pH dependence,

metal ion dependence, kinetic behavior, and inhibition by

zaragozic acid [141].

In prokaryotes, the conversion of squalene to other com-

pounds varies. In bacteria, a class of triterpenoids, the pen-

tacyclic hopanoids, are formed as building blocks for

membrane biogenesis [142, 143]. Hopanoids are most abun-

dant in aerobic bacteria (cyanobacteria, methanotrophs, and

heterotrophs) and in some anaerobic bacteria, but not in

archaea. Hopanoids play a role in maintaining membrane

integrity and permeability [144] and cope with external stress

such as ethanol tolerance [145], oxygen diffusion [146], and

prevention of water diffusion into spores [147]. Synthesis of

hopanoids starts from squalene and is catalyzed by squalene-

hopene cyclase. The existence of this reaction, however, does

not exclude synthesis of steroids by S-2,3-oxidosqualene

cyclase. Interestingly, both enzyme activities were demon-

strated in Methylococcus capsulatus [148]. Bode et al. [149]

Figure 4. Squalene synthesized via methylerythritol phosphate

(MEP) pathway in E. coli. DMAPP, dimethylallyl diphosphate; DXS,

DXP synthase; DXR, DXP reductoisomerase; FPP, farnesyl diphos-

phate; FPS, FPP synthase; G-3-P, glycerol-3-phosphate; HMBPP,

(E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate; HMG-CoA, 3-

hydroxy-3-methyl-glutaryl-CoA; IDI, isopentenyl diphosphate iso-

merase; IPP, isopentenyl diphosphate; MEP, 2-C-methyl-D-erythritol

4-phosphate; SQS, squalene synthase. 1 DRL, DXR-like protein

found in B. abortus [130]. 2 Cyanobacteria can utilize substrates

from pentose phosphate cycle derived from photosynthesis [300].
3 IPP isomerase type II was found in cyanobacteria [301] and in

actinomycetes Streptomyces sp. (in MVA pathway) [133].
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who screened for squalene and steroid production in my-

xobacteria concluded that steroid patterns are species and

strain specific and not affected by inhibitors of the steroid

biosynthetic pathways of eukaryotes. Recently, Lamb et al.

[150] showed the presence of a post-squalene lanosterol

biosynthetic enzyme complex acting as a component of the

prokaryotic sterol biosynthesis pathway. Thus, some bacteria

may indeed have the ability to synthesize sterols. These

results could be a key to understand the phylogenetic devel-

opment of sterol and steroid synthesis.

Interestingly, squalene can be used as a carbon source by

some bacteria such as Corynebacterium sp. [151, 152],

Corynebacterium terpenotabidum sp. nov. [153], Rhodococcus

sp. [154], Pseudomonas sp. [155], or Arthrobacter sp.

[156, 157]. Mechanisms involved in this process appear to

include (i) oxidation of the terminal methyl groups and

formation of the corresponding a,v-diodic acid [152],

(ii) hydration of the double bonds resulting in tertiary alco-

hols [151], or (iii) cleavage of internal double bonds catalyzed

by an oxygenase leading to geranylacetone and 5,9,13-trime-

thyltetradec-4E,8E,12-trienoic acid [156, 157]. Marinobacter

sp. (2sq31) is able to degrade squalene under aerobic and

anaerobic conditions [158]. The proposed model for the

anaerobic process is hydration of squalene to methyl ketones

and alcohols, which are carboxylated to isoprenoid acids and

further metabolized via b-oxidation and b-decarboxymethy-

lation [155, 159–161]. Aerobic degradation starts with cleav-

age of C10/C11 or C14/C15 double bonds in addition to

steps of the anaerobic pathway [156].

Recently, studies to improve squalene production in

E. coli were published. Ghimire et al. [162] introduced

and overexpressed the putative genes of hopanoid synthesis,

hopA, hopB (encoding squalene/phytoenol synthase), and

hopD (encoding farnesyl diphosphate synthase) from

Streptomyces peucetius in E. coli. The yield of squalene was

increased from�4 to�12 mg/L when genes encoding deoxy-

xylulose phosphate synthase and IPP isomerase were also

expressed.

5.2 Squalene synthesis in yeast

Many studies defining the role of sterols in eukaryotic cells

were performed with the yeast as a eukaryotic model system.

Effects of sterols on membrane fluidity [163], membrane

permeability [164, 165], energy source utilization [166],

and the activity of membrane-bound ATPase [167] were

investigated using yeast mutants bearing defects in the ergo-

sterol biosynthetic pathway. As in other eukaryotic cells, the

formation of sterols in yeast can be divided into two parts.

The first part named mevalonate or isoprenoid pathway

(Fig. 5) starts with acetyl-CoA and leads to the formation

of farnesyl pyrophosphate (FPP) which is used as a substrate

for further biosynthetic routes, e.g., synthesis of heme [168],

quinones [169], and dolichols [170]. Mutations affecting

these steps of the sterol biosynthetic pathway are lethal.

The best-studied enzyme of the yeast MVA pathway is

HMGR, the first control point of regulation. Actually, yeast

cells harbor two HMGR enzymes encoded by HMG1 and

HMG2, respectively [171]. It has been shown that overex-

pression of truncated HMG1 leads to an approximately 40-

fold increase of HMG-CoA reductase (HMGR) activity,

higher yield of the dry matter and accumulation of squalene

[172]. The enzyme shows feedback inhibition similar to

animal and plant cells in the presence of ergosterol [173]

and is subject to catabolic repression [174]. Recently, Garza

et al. [175] reported that stability of Hmg2p is regulated by

geranylgeranyl diphosphate. Although Hmg1p and Hmg2p

are similar in function, regulation of their expression is differ-

ent. Thorsness et al. [176] reported that expression of HMG1

was stimulated whereas expression of HMG2 was repressed

by heme. Deleting HMG1 a HMG2 rendered yeast cells non-

viable in the absence of mevalonate feeding because

they could not form mevalonate [171]. In contrast to

Figure 5. Squalene synthesis in yeast. DMAPP, dimethylallyl

diphosphate; Erg1p, SQE; Erg7p, lanosterol synthase; Erg9p,

SQS; Erg20p, FPP synthase; FPP, farnesyl diphosphate; GPP, ger-

anyl diphosphate; HMG-CoA, 3-hydroxy-3-methyl-glutaryl-CoA;

Hmg1p, Hmg2p, HMG-CoA reductase; Idi1p, isopentenyl diphos-

phate isomerase; IPP, isopentenyl diphosphate; MVA, mevalonate.
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Saccharomyces cerevisiae, Schizosaccharomyces pombe contains

only one HMGR gene [177].

Conversion of FPP to the end-product of the pathway, the

yeast specific ergosterol includes eleven reactions. The three

initial steps are essential and well characterized points of

regulation. Fusion of two FPP molecules yielding one mol-

ecule of squalene is catalyzed by the essential SQS Erg9p

[178]. Similar to HMGR, ERG9 is subject to transcriptional

regulation [179]. In the yeast, squalene does not accumulate

within the cell under normal growth conditions because it is

efficiently converted to ergosterol. In wild type, a minor

amount of squalene was detected in lipid droplets together

with TAGs and steryl esters [22]. When squalene accumu-

lates under anaerobiosis or in hem1 mutant cells, over 70% of

its cellular amount is accumulated in lipid droplets. Small

amounts of squalene were also found in membranes [21,

180]. It was shown that squalene accumulation did not cause

a lipotoxic effect [21].

In the ergosterol biosynthetic pathway, squalene formed

through reactions described above is further converted to

squalene epoxide by the SQE Erg1p [181]). This step

requires oxygen making ergosterol synthesis strictly aerobic

[182]. Erg1p is dually localized in the yeast, namely to the ER

and lipid particles/droplets [183]. In vitro, only SQE from the

ER but not from isolated lipid droplets is enzymatically active

[183]. A reductase required for this reaction and localized

exclusively to the ER may be responsible for this effect. The

subsequent step of ergosterol synthesis is cyclization of 2,3-

oxidosqualene and formation of the first sterol, lanosterol.

This reaction is catalyzed by lanosterol synthase (oxidosqua-

lene cyclase) encoded by the ERG7 gene [184, 185]. The

remaining steps of the ergosterol biosynthetic pathway

include modifications of the sterol ring system and of

the side chain as summarized in various review articles

[186–188].

Several biosynthetic pathways of the yeast including syn-

thesis of heme, sterols, and unsaturated fatty acids require

molecular oxygen [189–192]. Therefore, ergosterol and

unsaturated fatty acids are required as supplements to yeast

cultures grown anaerobically [191, 192]. Under these con-

ditions, squalene accumulates at a maximum yield of

�41 mg/kg dry weight (DW) [110, 114]. Variation of culture

conditions and inoculum size further increases the yield of

squalene [193]. It has to be taken into account, however, that

strictly anaerobic cultivation of yeast is difficult. Jahnke and

Klein [182] observed that SQE (Erg1p) activity increased to

almost half of its maximal value in anaerobic yeast cells after

adding as little as 0.03% oxygen and rapid synthesis of ergo-

sterol from squalene occurred. This problem may be over-

come by deletions of ERG1 or ERG7.

Squalene also accumulates under heme-deficiency [21].

Blocking the synthesis of heme in the yeast leads to accumu-

lation of lanosterol since sterol-14-a-demethylase (Erg11p) is

the first NADPH-heme-dependent cytochrome P450

protein in the ergosterol biosynthetic pathway [194]. At

the same time, however, squalene accumulates at

substantial amounts. It has to be noted that only under

anaerobiosis, in heme-deficient strain and sterol uptake

mutants ergosterol can be properly incorporated into the

yeast [195, 196].

Under aerobic conditions, squalene accumulation can

also be achieved by increasing the flux through the early part

of the MVA pathway, e.g., by increasing the activity of

HMGR [172, 197]. Temperature shift is another possibility

to accumulate squalene in the yeast. Loertscher et al. [198]

showed that an hmg1 mutant grown at 168C produced

approximately four times more squalene than cells grown

at 308C. Another experimental strategy to increase squalene

was reported by Mantzouridou and Tsimidou [199, 200].

These authors showed that the stable Hmg2p induced a

strong increase in squalene (18.5 mg/g) and a smaller

increase in lanosterol under semi-anaerobic conditions.

Combined Hmg2p stabilization and ERG6 deletion did

not further enhance squalene production, since lack of ergo-

sterol feedback inhibition led to an elevated transfer of sur-

plus squalene into C27 sterols.

5.3 Squalene synthesis in microalgae

Another microbial source for the production of squalene are

microalgae, which are microscopic algae, typically found in

fresh water and marine systems [201]. They are widely used

for the production of various compounds such as polysac-

charides, proteins and carotenoids, or as a source for renew-

able energy due to their ability to transform sewage and waste

into valuable biomass. Typical representatives of this family

of microorganisms are Scenedesmus obliquus, Chlamydomonas

reinhardtii, Chlorella fusca, and Botryococcus braunii which

belong to the group of photosynthetic algae. Some microalgae

can also accumulate reasonable amounts of squalene [115].

Traustochytrid Aurantiochytrium sp. (formerly known as

Schizochytrium) is an efficient producer of squalene. This

microorganism grows rapidly and produces large amounts

of squalene under heterotrophic conditions, because it lacks

the photosynthetic apparatus for carbon fixation [202, 203].

This property eliminated the usual problem of microalgae,

the light limitation in closed culture systems. Optimization of

culture ingredients led to increase of content and yield of

squalene [204]. Jiang et al. [115] reported that the squalene

level also depends on the cultivation time. While the squalene

level reached �0.16 mg/g dry weight after 3 days, only

�0.04 mg/g dry weight were found after 5 days in

cultures of Schizochytrium mangrovei. Treatment of cells with

the inhibitor terbinafine led to a squalene content of

�0.5 mg/g biomass [205]. Botryococcus braunii was also found

to accumulate squalene, but this microorganism did not grow

well under heterotrophic conditions making this system less

attractive for biotechnological production [117]. Chen et al.

[202, 204] optimized the nitrogen source which enhanced

squalene production in Aurantiochytrium sp.
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Botryococcus braunii 3 classes A, B, and L produce differ-

ent types of hydrocarbons [206]. Type A forms

hydrocarbons C25 to C31, odd-numbered n-alkadienes,

and alkatrienes. Type B synthesizes triterpenoids such as

methylated squalene and hydrocarbons botryococcenes,

whereas type L produces only lycopadiene C40H78 [207].

In contrast to fungi, IPP of microalgae is synthesized through

the MEP pathway (Fig. 6) [208] or from substrates formed by

photosynthetic reactions [209]. Condensation of two IPP and

one DMAPP molecules yields FPP. Interestingly, farnesol or

its derivatives farnesal and 3-hydroxy 2,3-dihydrofarnesal can

also serve as substrates for FPP synthesis [210, 211].

Condensation of two molecules FPP yields presqualene

diphosphate. Cleavage of the rearranged cyclopropane cata-

lyzed by SQS leads to squalene, but direct cleavage of the

cyclopropane ring yields polyunsaturated C30-C37 triter-

penoid hydrocarbons termed botryococcenes. A SQS has

been identified, but it is still unclear whether this enzyme

catalyzes either squalene or botryococcene synthesis, or two

individual enzymes are responsible for each reaction [212,

213]. C30 Botryococcenes are further methylated to higher

homologs. The portion of squalene which is not used for

sterol synthesis is often methylated by non-specific methyl-

ases and stored together with other hydrocarbons [214].

Methylated squalene can be further metabolized to produce

botryoxanthins [215], braunixanthins [216], and tetrame-

thylsqualene epoxides [217].

6 Process biotechnology of squalene
production

Isolation of squalene is carried out preferentially from plant or

animal sources as starting material. Due to environmental

concerns squalene production from shark liver oil has

recently been challenged, and other sources such as plants

and microorganisms became more important. Extraction of

squalene from olive oil deodorization distillate (OODD)

became very popular because the squalene concentration

in this source is high and reaches 10–30%. Alternatively,

amaranth grains [218], leaves of the tree Terminalia catappa

[219] or lotus (Nelumbo nucifera Gaertn) bee pollen [220,

221] are used as a source of squalene. Attempts of large scale

production of squalene from microorganism and algae are

still in their infancy.

Squalene is thermolabile due to its unsaturated linear

chain. Thus, distillation, e.g., from vegetable oils is not a

suitable process for separation and isolation. Moreover, ther-

mal degradation of other compounds from oils such as TAGs

may occur as well. There are, however, alternative strategies

to isolate squalene from natural sources, such as solvent

extraction or supercritical fluid extraction (SFE). Solvent

extraction is a most efficient process, and squalene as a

non-polar lipid can be extracted using organic solvents like

hexane. This method, however, is largely restricted to

research laboratories due to regulatory, financial, and safety

concerns (toxicity and flammability). The method used more

frequently in industry is short-path distillation, a high

vacuum process. Condensers are positioned close to the

evaporator surface, and the feed liquid flows on the evapor-

ator surface as a thin falling film. Different temperatures and

vacuum settings can be used to distill the compound which is

required [222]. The third extraction method, SFE, is most

preferred in industry. As the usual solvent, supercritical car-

bon dioxide (SC-CO2) is used because of its inertness, non-

toxicity, high volatility, and low cost. CO2 gets fluid when it

reaches a temperature of 31.18C at a pressure of 7.38 MPa.

Due to the near-ambient critical temperature of CO2, SC-

CO2 is suitable for extraction of thermolabile natural prod-

Figure 6. Squalene synthesized via methylerythritol phosphate

(MEP) pathway in green algae B. braunii. IPP and DMAPP are

synthesized via MEP pathway. Substrates derived from photosyn-

thesis also might contribute to produce IPP. Condensation of IPP and

DMAPP yields FPP. Other substrates for FPP can be farnesol or its

derivates farnesal and 3-hydroxy 2,3-dihydrofarnesal. FPP is then

condensed into presqualene diphosphate. SQS creates linkage 10-1

of two farnesyl moieties leading to squalene, while botryococcene

synthase (BS) creates linkage 10-3 yielding botryococcene [214].

Squalene and botryococcenes can then be methylated by non-spe-

cific methylases of S-Adenosylmethionine (SAM). BS, botryococ-

cene synthase; DMAPP, dimethylallyl diphosphate; FPP, farnesyl

diphosphate; DXP, 1-deoxy-D-xylulose-5-phosphate; DMAPP,

dimethylallyl diphosphate; IPP, isopentenyl diphosphate; MEP, 2-C-

methyl-D-erythritol 4-phosphate; NADPH, nicotinamide adenine

dinucleotide phosphate; SQS, squalene synthase; SAM, S-

adenosylmethionine.
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ucts. This extraction method has several advantages such as

high purity of the product and combination of extraction and

concentration of components in one step. This process is not

very expensive and yields squalene at natural quality without

usage of solvents. The efficiency of this extraction method can

be improved by modification of conditions. As an example,

10–15% ethanol can be used as a co-solvent to increase the

yield and to extract also polar components. Disadvantages of

this method, however, are complexity of equipment, precise

maintenance of high pressure (�10 MPa), and presence of

solvent residues in extracted samples.

As mentioned above, squalene is mostly produced from

its most abundant source, the shark liver oil [223]. The

critical point and the limitation of this process is the presence

of environmental pollutants such as PCB, dioxins, and heavy

metals in shark liver [224, 225]. Moreover, shark liver oil

contains 0.1% pristane, low volatile TAGs, and glyceryl

ethers. Especially removal of pristane (C19H40) is needed

since it is a skin irritant. Under optimum processing con-

ditions (25 MPa and 608C) squalene can be obtained at 95%

purity by weight without using reflux and at 99% purity with

reflux [34]. Recent investigations using short-path distillation

led even to the isolation of odor-free 97% pure squalene

[226].

Olive oil deodorization distillate residues (OODD) are

by-products of the oil refining process and contain 10–30%

squalene and 30% free fatty acids (FFA) by weight as well as

smaller amounts of sterols and tocopherols. Usually, these

samples also contain olive oil neutralization by-products and

hence have a low market value. The technical problem of

counter-current packed column extraction with SC-CO2 is

separation of squalene from FFA because of very similar

solubility in SC-CO2. Thus, additional steps are needed

for the purification of squalene. Ruivo et al. [227] studied

this problem with model mixtures of squalene and oleic acid

by introducing nanofiltration with various membranes taking

into account the different molecular weights of squalene and

oleic acid. The idea was that FFA as smaller molecules with

higher diffusivity in SC-CO2 would permeate membranes

and squalene would concentrate in the retentate.

Surprisingly, the opposite effect was observed and squalene

permeated membranes better than oleic acid. This finding

was explained by specific interactions of the permeating mol-

ecules and the active layer of the membrane. The highest

selectivity was obtained using polydimethyl siloxane and

polyamide AD membranes, but the former membrane

material showed a low efflux [227]. Another strategy was

used by Bondioli et al. [228] who separated squalene from

glyceride and non-glyceride substances found in olive oil.

FFA, fatty acid methyl and ethyl esters were converted to

their corresponding TAGs prior to SFE and then easily

separated as suggested for TAG/oleic acid mixture in pilot

experiments [229]. This separation process which required

zinc for catalytic esterification and high pressure yielded

highly enriched squalene.

An alternative to counter-current packed column separ-

ation is static mixers. As an example, static mixers are used for

the removal of caffeine from SC-CO2 by water after SFE

decaffeination [230]. Low costs, short residence times, and

minimal space requirements compared to the packed column

led Catchpole et al. [231] to focus on supercritical extraction

of lipids in a static mixer at laboratory and pilot-scale.

Although the separation factor of squalene and other major

components did not reach values achieved in packed column

for mixtures which are easy to fractionate such as shark liver

oil, the separation efficiency was similar in static mixer and in

packed column with mixtures difficult to be fractionate.

Another plant source used for squalene isolation is amar-

anth seed oil (Amaranthus cruneus). Oil from amaranth grains

contains 6–8% of squalene [218, 232, 233]. As an isolation

method short-path distillation was employed (1808C,

3 mtorr vacuum) resulting in 76% recovery of squalene in

the distillate [234]. Squalene was also found in leaves but not

in seeds of Terminalia catappa, a tropical and sub-tropical tree

used in folk medicine for its antipyretic and hemostatic prop-

erties and prevention of hepatitis and hepatoma [235, 236].

The squalene content in leaves increases during maturation.

Using SFE a squalene yield of �12 mg/g and a content in

extracts of �12% were obtained [219].

The deodorization distillate of rice bran oil contains 8%

squalene as another possible source of this lipid. Several

isolation methods for squalene or squalane from such deo-

dorization distillates include saponification, solvent fraction-

ation, distillation, hydrogenation, and finally molecular

distillation [237–239]. Sugihara et al. [240] reported recently

a new fractionation method of squalene and phytosterols

which is based on a combination of solvent fractionation

and supercritical fluid chromatography using silica gel after

SFE of the deodorization distillate. This method had many

advantages such as fewer operation steps, time-saving, no

oxidative rancidity, and continuous production of the two

functional components.

Soybean oil deodorizer distillate residues do not contain

much squalene but can still be used as a reasonable source.

This material contains 3.5% squalene, 13-14% tocopherols

(vitamin E), 26% sterols, FFA, TAGs, DAGs, and MAGs

[241]. Wang et al. [242] reported an improved isolation

procedure of squalene by introducing an additional step of

pressure swing adsorption in SC-CO2. Pressure swing

adsorption is based on the fact that fluids tend to be adsorbed

to solid surfaces under pressure. a-Tocopherol was selec-

tively adsorbed on an octadecylsilica adsorbent at high pres-

sure and squalene was collected at high purity. a-Tocopherol

was then eluted in the desorption step by reducing the

pressure.

Production of squalene from microbial sources is still

under investigation. As mentioned before, microorganisms

have a great potential to become reasonable sources for

squalene isolation. Advantages as rapid and massive growth,

however, still do not compensate for the low yield of squalene.
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Current investigations are focused on improving the content

of squalene in microorganism. S. cerevisiae as one of the best-

studied eukaryotic organisms produces squalene only at low

yield. Genetic manipulations (see previous Sections) may be

a strategy for improvement. Other microorganisms showed a

more promising accumulation of squalene. Torulaspora del-

brueckii isolated from molasses accumulated �240 mg squa-

lene/kg dry weight [110], and Pseudozyma sp. produced up to

�5 g/L biomass and �340 mg/L squalene [243]. Some

marine bacteria such as Rubritalea squalenifaciens sp. nov.

[244], R. sabuli sp.nov. [245], R. spongiae [246], and

R. tangerine [246] were also found to accumulate squalene,

but are not yet used for large scale isolation of this lipid.

7 Applications of squalene

Applications of squalene have been recently reviewed in some

detail [5, 32, 247]. In the following section, we will address

some of these applications focusing on the use of squalene for

therapeutic, pharmacological, and cosmetic purposes.

7.1 Role of squalene as antioxidant

Previous studies have shown that squalene can act as a highly

efficient singlet oxygen scavenging agent [2, 248]. Therefore,

squalene was considered to exhibit antioxidant properties.

Since oxidative stress and increase in ROS may induce cancer

[249], squalene was also regarded as a potential anti-cancer

component [5]. However, the scavenging capacity of squa-

lene has not been studied in much detail and was challenged

by recent studies. Warleta et al. [250] reported that antiox-

idant activity of squalene against 2,2-diphenyl-1-picrylhydra-

zil stable radicals, 2,20-azino-bis(3-ethylbenzthiazoline-6-

sulphonic acid) cation radicals, or 2,20-azobis (2-methylpro-

pinamid) dihydrochloride-induced peroxyl radicals was not

observed even at high concentration. Similar observations

were published before [16, 251] concluding that squalene

antioxidant activity is extremely low. Conforti et al. [252],

however, described an antioxidant effect of squalene with an

IC50 value of 0.023 mg/mL. Squalene reduced the rate of

oxidation in a crocin bleaching assay where it might act as a

competitive compound to tocopherol and sitosterol [253]. A

weak antioxidant activity of squalene was also observed in

olive oil [251], which may, however, be due to the competi-

tive oxidation of the various other lipids present in such

samples. Dessi et al. [114] studied the effect of squalene

on the oxidative stability of PUFA and reported antioxidant

properties of squalene as a peroxyl radical scavenger in mild

UVA-mediated PUFA oxidation. Combination of PUFA and

squalene led to decreased lipid peroxidation in heart tissue of

rats [254].

Interestingly, different antioxidant effects of squalene

were observed in different types of cells. Squalene showed

antioxidant activity in vitro only in mammary epithelial and

bone marrow cells, but not in human breast cancer and

neuroblastoma cells [250, 255], although reference antiox-

idants were efficient in all these cells. Warleta et al. [250]

concluded that the squalene antioxidant selectivity depends

either (i) on the ‘‘glutathione paradox’’, where squalene

increases the amount of glutathione in normal cells [256];

(ii) on differences in squalene uptake, utilization, and

accumulation [255]; or (iii) on deregulation of antioxidant

systems in tumor cells [257]. Thus, squalene may act rather

on prevention than direct treatment of cancer.

7.2 Effects of squalene as a dietary supplement

Consumption of squalene, which is an intermediate in sterol

biosynthesis, did not increase the amount of cholesterol in

human serum [6, 31, 258]. Even high daily squalene con-

sumption did not enhance the cholesterol level, although

squalene uptake was efficient and squalene levels in the serum

were high [31]. A diet containing 850 mg squalene per day

for 20 wk rather decreased levels of total cholesterol for

approximately 17%, LDL- cholesterol for 22% and TAG

for 5% in patients suffering from hypercholesterolemia [258].

Hyperleptinemia (elevated plasma leptin levels) is con-

sidered as a high risk factor of obesity and hypertension [259–

261]. Squalene was suggested to be a possible component for

the treatment of cardiovascular diseases, because it reduces

the blood levels of cholesterol and TAG and decreases plasma

leptin [262–264]. Moreover, high dosage squalene treatment

decreased body fat and blood level of glucose in dogs and rats

[265–267]. Mechanisms of these squalene effects are still not

clear. It could either be a direct effect of squalene or indirect

assistance through lowering TAGs and thus enhancing body

sensitivity to leptin [262, 267]. Squalene was also shown to

increase testicular weights and testosterone levels in dogs and

rats [265–267], improved the reproductive performance of

meat-type male chicken and increased the serum testosterone

level and semen collection volume [268]. Squalene did not

affect the egg fertile rate in an artificial insemination model

but increased this rate in a natural mating model. Finally,

Motawi et al. [269] studied the role of squalene on oxidative

cardiac, urotoxic, and testicular damage induced by cyclo-

phosphamid in male Wistar rats. These authors found that

squalene treatment had a cytoprotective effect and attenuated

cyclophosphamid-induced pathological alterations.

High dose of squalene (>13.5 g/day) significantly

decreased wrinkles in aged human skin, increased type I

procollagen and decreased UV-induced DNA damage in vivo

but was associated with transient adverse effects such as loose

stool [270]. Squalene exhibited antitumor activity against

colon, skin, sarcoma, and lung cancer in rodents [6, 33,

271, 272]. As an example, olive oil consumption decreased

incidence of breast cancer [66, 273], but squalene did not

induce death of breast tumor cells and thus may be ineffective

once breast cancer has established [250]. The mixture of lipid

components in olive oil appears to contribute more to pre-

vention than treatment as well [5, 65, 66]. Decreased risk of
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breast, skin, and colon cancer [66, 274], a chemo- and

cardio-protective effect [5, 6, 66], an antihypertensive effect

[275, 276], anti-inflammatory action [277], and prevention

of atherosclerotic plaque formation [278] were reported. The

protective effect depends on the amount and time period of

olive oil consumption. Interestingly, annual olive oil con-

sumption per person can be up to 15 kg [66].

The mechanism proposed for the antitumor effect of

squalene is inhibition of HMGR catalytic activity. It has been

shown that squalene feeding in rats (1% in the diet for 5 days)

inhibited HMGR activity (about 80%) in hepatic microsomes

[279]. Inhibition of HMGR leads to inhibition of other

intermediates of the cholesterol pathway, such as mevalonate

or FPP. This affects farnesylation of oncogene Ras p21, signal

transduction, and cellular proliferation [5]. A novel facet of

squalene antitumor activity has been suggested by Newmark

and collaborators [6] based on results presented by

Strandberg et al. [279]. These authors showed that feeding

of squalene resulted in a 20-fold increase in the serum and a

30-fold total increase of methyl sterols including lanosterol,

14-desmethyl lanosterol, and 14-monomethylated sterols.

Katdare et al. [280] tested lanosterol and other metabolites

of squalene as potential antitumor inhibitors. They con-

cluded that squalene metabolites or precursor substances

for posttranslational modifications of Ras p21 oncogenes

showed stronger chemopreventive effect than squalene itself.

7.3 Use of squalene in human medical treatment

Squalene has been frequently used as an additive to lipid

emulsions as drug carrier in pharmaceutical and vaccine

applications (for reviews see [3, 4, 247]). Such emulsions

are able to incorporate poorly soluble drugs within their

dispersal phase, which is beneficial for increased drug and

vaccine uptake, minimizing side effects through contact of

drug and body fluid, decreasing the release of the drugs and

other multiple adjuvant effects [4]. Squalene and squalane

form very stable and viscose emulsions to solubilize lipophilic

drugs, adjuvants, and vaccines with highly potent transfection

activity [281, 282] and small droplet size [283]. The effect of

some of these emulsions, e.g., SAF, MF591, DETOX1, and

PROVAX1, as vaccine adjuvant have been well studied [4].

As an example, squalene together with the detergents

Tween1 80 and Span1 85 forms the adjuvant MF591

(Novartis), an oil-in-water microemulsion approved for

human use [284, 285]. MF591 has been shown to be a

potent and safe adjuvant with several vaccines, e.g., against

hepatitis B and C, herpes simplex virus, HIV-1, and influenza

(vaccine Fluad1).

However, utilization of squalene for vaccination is still a

matter of dispute [286]. After the Gulf war, veterans showed

multiply syndromes, such as rashes, headaches, arthralgias,

memory loss, increased allergies, sensitivities, and neurologi-

cal abnormalities [287]. Squalene was suggested to be a cause

of these Gulf war symptoms since it was added as adjuvant to

anthrax vaccine [288]. Anti-squalene antibodies were found

in gulf war syndrome-like patients [289]. Later, it was con-

cluded that anti-squalene antibodies occur naturally in

humans, non-correlated with anthrax vaccination [290].

MF59 emulsion adjuvant in vaccines did neither induce

the level of anti-squalene antibodies nor enhanced the titers

of pre-existing anti-squalene antibodies [291].

Recently, a prodrug strategy for improved delivery of

nucleotide analogs became a research focus. Nucleotide ana-

logs act a potent inhibitors of DNA synthesis and have been

used as antiviral and anticancer therapeutics [292, 293].

Transport of these drugs into the cell is limited due to high

hydrophobicity or poor in vivo stability. Squalenoylation of

the nucleotide analogs may help to overcome slow diffusion.

Conjugation of squalene to the drugs created nanoassembly

without using surfactants [294]. As an example, interaction of

the lipophilic prodrug gemcitabine-squalene with biomem-

branes was improved compared to free gemcitabine [11, 12].

Sarpietro et al. [295] studied the prodrug combination of

squalene-acyclovir. The absorption to artificial membranes

was improved and it was suggested that the squalene moiety

stays in the membrane environment whereas the acyclovir

moiety protrudes into the aqueous phase with only a small

contribution of the prodrug to the phospholipid thermotropic

behavior. Recently, a new strategy of squalenoylation was

reported [10]. After entering the cell, nucleotide analogs get

activated by phosphorylation yielding nucleoside-monophos-

phate. This step, however, is rate limiting because nucleotide

analogs are poor substrates for cellular kinases. Therefore, it

was suggested to use nucleoside monophosphate as drugs.

Unfortunately, negatively charged phosphate groups of

nucleoside monophosphates were not able to enter the cell

[296]. To solve this problem, squalenoylation of the phos-

phate moiety was performed creating an amphiphilic mol-

ecule which self-assembled in water in the form of particles of

100–300 nm size. Assembling might be caused by compact

and highly coiled conformation of the squalene moiety in the

aqueous environment [297]. Such particles are able to enter

the cell [10]. As an example, nanoassemblies of 4-(N)-1,10,2-

trisnor-squalenoyldideoxycytidine monophosphate showed

improved anti-HIV activity, and 4-(N)-1,1’,2-trisnor-squa-

lenoylgemcitabine monophosphate improved anticancer

activity on leukemia cells compared to non-squalenoylated

analogs [10, 294, 298].

8 Summary and conclusions

In this review article, we summarized our recent knowledge

about squalene, an isoprenoid lipid and intermediate of sterol

synthesis. Synthesis of squalene is slightly different in micro-

organisms, plants, and mammalian cells. Also further meta-

bolic conversion of squalene varies in different cell system.

In this article, we addressed biochemical and biophysical

properties of squalene which are unique and mainly due to

its highly hydrophobic structure. Cell biological effects of
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squalene appear to be not dramatic, although this lipid may

act as a mild modulator of membrane stability. These largely

inert properties of squalene, however, may be regarded as

beneficial for usage in nutrition, pharmacy, cosmetics, and

medicine.

For reasons described above, different sources of squalene

and processes to isolate this compound became of interest. It

appears that besides shark liver oil olive oil deodorizer dis-

tillate will be used in the future as most efficient source of

squalene. The advantage of olive oil deodorizer distillate is

that it contains a relatively high amount of squalene and is a

‘‘waste’’ of olive oil raffination. Nevertheless, other sources of

squalene such as microorganisms may also become import-

ant. For large scale isolation of squalane, various methods of

process biotechnology were developed and applied. The chal-

lenge for these processes is efficiency, especially when

samples with low squalene concentration have to be used.

Recent developments showed that squalene can became a

useful component in nutrition, health care, and cosmetics. As

a biological supplement to the diet and as an additive to drugs

it appears to have beneficial properties. In summary, squalene

can be regarded as a versatile molecule which may become

even more useful for applications in the future.
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